

Lesson Plan

Name of the Faculty	: Mr. Pardeep
Discipline	: Mechanical Engineering
Semester	: 4 th
Subject	: Material Engineering (PCC-ME-208G)
Lesson Plan Duration	: 15 Weeks (from May. 2021 to August 2021)

** Work Load (Lecture) per week (in hours): Lectures-04, Practicals-01

Week	Theory		Practical		
	Lecture	Торіс	Practical	Торіс	
	Day	(including assignment/test)	day		
1^{st}	1^{st}	Crystal Structure: Unit cells,	1^{st}	To study crystal structures	
	2 nd	Metallic crystal structures. Ceramics.		or a given specificit.	
	3 rd	Imperfection in solids: Point, line imperfections.]		
	4 th	Interfacial and volume defects.			
2 nd	5 th	Dislocation strengthening mechanisms	2 nd	To study crystal imperfections in a given specimen.	
	6 th	slip systems.			
	7 th	Critically resolved shear stress.			
	8 th	Mechanical Property measurement: Tensile tests.			
3 rd	9 th	compression and torsion tests.	3 rd	To study microstructures of metals/ alloys.	
	10 th	Young's modulus, relations between true and engineering stress-strain curves,			
	11 th	generalized Hooke's law.			
	12 th	Yielding and yield strength.	1		

4 th	1 Oth	1	4 th	
4 th	13	ductility, resilience, toughness	4 th	To prepare solidification
	14 th	elastic recovery.		specimen.
	15 th	Hardness: Rockwell, Brinell Tests		
	16 th	Vickers and their relation to strength.		
5 th	17 th	Static failure theories: Ductile and brittle failure mechanisms,	5 th	To study heat treatment processes (hardening
	18 th	Tresca, Von-mises, Maximum normal stress.		and tempering) of steel specimen.
	19 th	Mohr-Coulomb and Modified Mohr-Coulomb; Fracture mechanics:		1
	20 th	Introduction to Stress intensity factor approach and Griffith criterion.		
6 th	21 st	Fatigue failure: High cycle fatigue.	6 th	To study microstructure of heat-treated steel
	22 nd	Stress-life approach.		
	23 rd	SN curve, endurance and fatigue limits.		
	24 th	Effects of mean stress using the Modified Goodman diagram.		
7 th	25 th	Fracture with fatigue.	7 th	To study thermo-setting
	26 th	Introduction to non-destructive testing (NDT).		of plastics.
	27 th	Alloys, substitution and interstitial		
	28 th	solid solutions- Phase diagrams.		
8 th	29 th	Interpretation of binary phase diagrams.	8 th To study the creep behavior of a given specimen. emmisivity with surface temperati	To study the creep behavior of a given
	30 th	microstructure development.		specimen. emmisivity
	31 st	Eutectic, peritectic, peritectoid and monotectic reactions.		with surface temperature.
	32 nd	Iron Iron-carbide phase diagram.		
9 th	33 rd	microstrctural aspects of ledeburite, austenite, ferrite and cementite.	9 th	To study the mechanism of chemical corrosion and its protection.

	34 th	cast iron.TTT-curve.		
	35 th	Heat treatment of Steel: Annealing, tempering,		
	36 th	normalising and spheroidising.		
10 th	37 th	Isothermal transformation diagrams for Fe-C alloys	10 th	To study the properties
	38 th	Microstructure development.		plastics.
	39 th	Continuous cooling curves.		
	40 th	Interpretation of final microstructures and properties.		
11 th	41 st	Austempering, martempering, case hardening,	11 th	To study Bravais lattices with the help of models
	42 nd	carburizing, nitriding, cyaniding.		
	43 rd	carbo-nitriding, flame and induction hardening,		
	44 th	vacuum and plasma hardening.		
12 th	45 th	Alloying of steel, properties of stainless steel and tool steels.	12 th	To study crystal structures and crystals
	46 th	maraging steels- cast irons.		imperfections using ball
	47 th	grey, white, malleable irons.		models.
	48 th	spheroidal cast irons.		
13 th	49 th	copper and copper alloys.	13 th	Revision.
	50 th	brass, bronze and cupro-nickel alloys		Revision.
	51 st	Aluminium and Al-Cu – Mg alloys-		Revision.
	52 nd	Nickel based superalloys and Titanium alloys.		Revision.
14 th	53 rd	Revision.	14 th	Revision.
	54 th	Revision.		Revision.
	55 th	Revision.		Revision.
	56 th	Revision.		Revision.
15 th	57 th	Revision.	15 th	Revision.
	58 th	Revision		Revision.
	59 th	Revision.		Revision.
	60 th	Revision.		Revision.

